Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis

نویسنده

  • Yoshinobu Kawahara
چکیده

A spectral analysis of the Koopman operator, which is an infinite dimensional linear operator on an observable, gives a (modal) description of the global behavior of a nonlinear dynamical system without any explicit prior knowledge of its governing equations. In this paper, we consider a spectral analysis of the Koopman operator in a reproducing kernel Hilbert space (RKHS). We propose a modal decomposition algorithm to perform the analysis using finite-length data sequences generated from a nonlinear system. The algorithm is in essence reduced to the calculation of a set of orthogonal bases for the Krylov matrix in RKHS and the eigendecomposition of the projection of the Koopman operator onto the subspace spanned by the bases. The algorithm returns a decomposition of the dynamics into a finite number of modes, and thus it can be thought of as a feature extraction procedure for a nonlinear dynamical system. Therefore, we further consider applications in machine learning using extracted features with the presented analysis. We illustrate the method on the applications using synthetic and real-world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition

Spectral decomposition of the Koopman operator is attracting attention as a tool for the analysis of nonlinear dynamical systems. Dynamic mode decomposition is a popular numerical algorithm for Koopman spectral analysis; however, we often need to prepare nonlinear observables manually according to the underlying dynamics, which is not always possible since we may not have any a priori knowledge...

متن کامل

Comparison of optimized Dynamic Mode Decomposition vs POD for the shallow water equations model reduction with large-time-step observations

We propose a framework for dynamic mode decomposition of 2D flows, when numerical or experimental data snapshots are captured with large time steps. Such problems originate for instance from meteorology, when a large time step acts like a filter in obtaining the significant Koopman modes, therefore the classic dynamic mode decomposition method is not effective. This study is motivated by the ne...

متن کامل

Decomposition of Nonlinear Dynamical Systems Using Koopman Gramians

In this paper we propose a new Koopman operator approach to the decomposition of nonlinear dynamical systems using Koopman Gramians. We introduce the notion of an inputKoopman operator, and show how input-Koopman operators can be used to cast a nonlinear system into the classical statespace form, and identify conditions under which input and state observable functions are well separated. We the...

متن کامل

Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator

We establish the convergence of a class of numerical algorithms, known as Dynamic Mode Decomposition (DMD), for computation of the eigenvalues and eigenfunctions of the infinitedimensional Koopman operator. The algorithms act on data coming from observables on a state space, arranged in Hankel-type matrices. The proofs utilize the assumption that the underlying dynamical system is ergodic. This...

متن کامل

RAPID COMMUNICATIONS PHYSICAL REVIEW FLUIDS 1, 032402(R) (2016) Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations

The relationship between Koopman mode decomposition, resolvent mode decomposition, and exact invariant solutions of the Navier-Stokes equations is clarified. The correspondence rests upon the invariance of the system operators under symmetry operations such as spatial translation. The usual interpretation of the Koopman operator is generalized to permit combinations of such operations, in addit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016